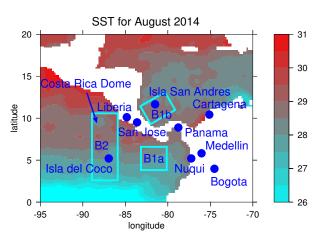
# OTREC: Organization of Tropical East Pacific Convection<sup>1</sup>

Željka Fuchs and David Raymond


Physics Department and Climate and Water Consortium New Mexico Tech Socorro, NM, USA

## Why the East Pacific?

- ➤ The tropical East Pacific ITCZ is unique due to the existence of a strong cross-equatorial SST gradient. Both the form and the forcing of deep convection there are not understood because of this SST pattern.
- The mechanisms of easterly wave formation and intensification in the East Pacific are also not understood. These waves are responsible for the formation of most East Pacific tropical cyclones.
- ► The Chocó jet, which impinges on the Pacific coast of Colombia, produces massive rainfall there. The mechanisms governing this jet are uncertain.

### **OTREC Field Program**

The NSF has funded the NSF/NCAR Gulfstream-V aircraft to study these issues. Dropsondes and a W-band radar will be used, with a base in Costa Rica. Study areas are shown below.



### Scientific Impact

An improved treatment of deep convection in diverse environments is needed in global weather and climate models. OTREC will contribute to this goal in a number of ways:

- The vertical heating profiles of convection in the East Pacific are highly uncertain. OTREC measurements are crucially needed for this.
- A better understanding of the interaction of convection with easterly waves would aid tropical cyclogenesis forecasts.
- Significant uncertainties in ITCZ dynamics would be resolved.

#### **OTREC** Details

- ▶ Planned time frame: August-September 2019
- ▶ Location: Based in Costa Rica, either Liberia or San Jose
- ▶ 160 hours of Gulfstream-V flight time
- ▶ 660 dropsondes deployed in  $\approx 1$  degree grid over 20 flights